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Graph clustering is an important problem in many domains. At a high level, given a graph, we want to find

sets of related vertices in the graph. This objective can be captured in several ways, so several formulations of

the clustering problem exist (such as k-medians). However, until recently, most formulations of clustering did

not allow clusters to overlap. Overlapping clusters are of interest in community detection, which motivates

a different definition of an (α, β)-cluster [Mishra et al. 2007] in a graph. This document is a report of my

research related to (α, β)-clustering. The key result is an NP-hardness result for a variant of this problem.
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1. INTRODUCTION

At a high level, graph clustering is the problem of finding sets of ‘similar’ vertices in

a graph. For example, given a graph where vertices represent documents and related

documents are connected by edges, we might want to find clusters of documents that

address the same topic. Another application is community detection : given a graph

where the vertices represent people and edges represent friendships, we might want

to search for communities of people.

Several formulations (such as k-medians) of the clustering problem exist, and try

to capture the high-level goal stated above. However, a notable shortcoming of most

traditional formulations is that they do not allow clusters to overlap. This is funda-

mentally unnatural in applications such as social network analysis, because in this

domain, individuals are expected to be a part of multiple communities at once.

In light of this, [Mishra et al. 2007] introduced the following definition of a cluster

in a graph. Given a graph G = (V,E) (where every vertex has a self-loop), a set S ⊆ V
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is called an (α, β)-cluster if it is internally α-dense and externally β-sparse. In other

words, we have the following :

For all u ∈ S, u has at least α|S| neighbors in S

For all v /∈ S, v has at most β|S| neighbors in S

It is not hard to see from this definition that a single vertex can belong to multiple

(α, β)-clusters in a graph, so this notion of clustering is well-suited for domains such

as community detection in social networks.

2. RELATED WORK

[Mishra et al. 2007] introduced this notion and gave an algorithm that finds all (α, β)-

clusters with an additional constraint (the ’ρ-champion constraint’) in polynomial time.

This algorithm only finds clusters with a ρ-champion, i.e. a vertex is said to ‘champion’

a cluster S if it has at most ρ|S| outside S.

In a later work, Balcan et al [Balcan et al. 2013] showed that such additional as-

sumptions are necessary for polynomial runtime. The showed instances where the

graph has quasi-polynomially many (α, β)-clusters (by picking a random graph from

the Erdös-Rényi model). They additionally showed that finding even one approxi-

mately large cluster in polynomial time is as hard as the hidden clique problem (for

a discussion of the hidden clique problem, see [Alon et al. 1998]), and gave a quasi-

polynomial time algorithm to find all such clusters (when α, β are fixed constants).

As far as hardness results are concerned, the existence of this algorithm means that

we cannot hope to prove NP-hardness for the (α, β)-clustering problem as formulated

here.
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3. APPROACHES

In this section, we will discuss several aspects of (α, β)-clustering that I explored over

the course of my research.

3.1. Random sparsification of the input graph

Balcan et al’s work does not directly address the (α, β)-clustering problem. Their for-

mulation introduces the idea of a (Θ, α, β)-self determined community, which is defined

on an ‘affinity system’ instead of a graph. An affinity system is a set of nodes V where

each node has a linear order of preference over all other nodes. For any fixed commu-

nity size c, we say that u votes for v if v appears in the top Θc of u’s votes. Finally, a

set S is said to be a (Θ, α, β)-self-determined community if every u ∈ S is voted for by

at least α|S| members in S, and no v /∈ S is voted for by more than β|S| members of S

(with respect to the community size |S|).

[Balcan et al. 2013] give an algorithm for this problem for the scenario where Θ, α, β

are constants : they find all (Θ, α, β)-self-determined communities in time proportional

to nO(1/α). They also show that this exponential dependence on 1
α is necessary : there

exist instances with nΩ(1/α) communities.

Given this, a natural approach is to consider conditions under which this problem

is tractable even for small (sub-constant) values of α. Certainly it cannot be tractable

in all cases due to Balcan et al’s construction. One possible way to obtain tractable

instances of small α value is to take dense a tractable instance, fix a community size,

and randomly delete edges in the corresponding directed graph to obtain a sparse

graph.

One approach we considered was the following - for fixed values of Θ, α and β and

a fixed community size c, an affinity system can be viewed as a directed graph (which
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is a more traditional setting for clustering problems). From such a graph, if we delete

edges at random with probability 1− p, we hope that the following statements hold :

(a) Every (Θ, α, β)-community (of size c) in the original system is now a (Θ, pα, pβ)-

community with high probability.

(b) If a set S is a (Θ, pα, pβ)-community in the new system, then it must have been close

to being a (Θ, α, β)-community in the original system.

Note that the interesting scenario is when p is a sub-constant parameter (such as

1/
√
n, where n is the number of nodes). If we could prove both these statements, we

could hope to extend Balcan et al’s algorithm to handle small α values. Unfortunately,

even though (a) is true, we could not prove (b).

3.2. Evaluating Mishra et al’s algorithm on MMSB graphs

[Airoldi et al. 2008] introduced a model for random graphs known as MMSB (mixed

membership stochastic blockmodels). In this model, for each node in the graph, we

draw a random membership vector according to a Dirichlet prior. The entries of these

vectors are real numbers denoting the affinity of the vertex towards each community.

After these draws, the graph can be formed by another random process on these vec-

tors. Specifically, if πu and πv are membership vectors of u, v respectively, then there is

an edge between u, v with probability πTuMπv, where M is a matrix with diagonal en-

tries being p and off-diagonal entries being q, where p > q. In other words, two vertices

are more likely to be connected if their randomly drawn membership vectors are af-

filiated with similar communities. For the sparse regime of the Dirichlet distribution,

these graphs naturally contain overlapping communities, so it is interesting to analyze

how the (α, β)-clustering algorithm performs on MMSB graphs.

Final paper for 15-400, Carnegie Mellon University



Hardness of Community Detection 1:5

We did not analyze this theoretically, but instead wrote a simulation to cluster

MMSB graphs with the (α, β)-clustering algorithm.

MMSB graphs exhibit natural overlapping community structure simply by virtue of

the underlying distribution. Here are typical graphs in the model (both with relatively

low community overlap) :

However, on running a few simulations, we found that Mishra et al’s (α, β)-clustering

algorithm did not recover these communities unless the overlap was very small. For

instance, here is one graph where the algorithm did quite well (the colors show the

clusters marked by the algorithm) :

However, as we increased the overlap parameters, the quality of the clusters found

by the algorithm deteriorated quickly. Given this, we did not explore whether we could

prove any theorems about the performance of the algorithm.
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3.3. Hidden clique hardness for the k-clique densest subgraph problem

For a short period, we explored a problem called the k-clique densest subgraph prob-

lem, introduced by [Tsourakakis 2015] as an alternative to other densest subgraph

formulations, which are typically NP-hard. Given graph G = (V,E) and a parameter k,

this problem asks for a subset S ⊂ V that induces the largest number of k-cliques (per

vertex in S). When k is a constant, this problem can be solved exactly (using flow-based

algorithms). [Tsourakakis 2015] proposed an efficient 1
k -approximation even when k is

not a constant. It seems like one should be able to obtain conditional lower bounds for

the approximability of this problem. We attempted to show that approximating this

problem is as hard as the hidden clique problem, but this direction did not work out.

3.4. Proving NP-hardness of fractional clustering

As noted in the ‘related work’ section, we cannot hope to easily prove that deciding

(for constant α, β) if there is an (α, β)-cluster of a certain size in a graph is NP-hard,

because there exists a quasi-polynomial time algorithm that decides this (proving

this problem to be NP-hard would falsify the exponential time hypothesis). A natural

step is to then relax this problem by dropping the external sparsity condition. Now,

we have a problem that is a relaxed version of the clique problem. We show that this

problem is still NP-hard.

Definition 3.1. α-fractional clustering.

For any fraction α in (0, 1], let α-fractional clustering be the following problem : given

a graph G = (V,E), where each vertex is implicitly considered to be its own neighbor,

and a size parameter k, determine if V has a subset S of size k such that every vertex

in S has at least αk neighbors in S.
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Definition 3.2. Balanced biclique problem.

The balanced biclique problem is as follows : given a bipartite graph G = (A,B,E)

and a size parameter j, decide if there is a copy of Kj,j (the balanced complete bipartite

graph on 2j vertices) in G. In other words, decide if there are j vertices in A and j

vertices in B that are fully connected to each other.

THEOREM 3.3. The α-fractional clustering problem is NP-complete if α is a fraction

of the form p+1
p+2 for some natural number p (including 0).

PROOF. This problem is easily seen to be in NP. We now reduce the balanced bi-

clique problem (which is known to be NP-complete) to α-fractional clustering (where

α = p+1
p+2 ) as follows. Suppose we are given an instance of the balanced biclique prob-

lem, i.e. a bipartite graphG = (A,B,E) and a size parameter j. From this, we create an

instance of α-fractional clustering. Construct the graph H as follows : we add a clique

of size pj − 1 (call this C) to G, and connect all vertices in this clique to all vertices in

G. Moreover, we set the size parameter k to be (p+ 2)j − 1. We claim that G has a copy

of Kj,j iff H has an α-fractional cluster of size k.

Here is an illustration of the construction with j = 4, p = 2 (i.e. k = pj − 1 = 7). The

left hand side is a random bipartite graph, and the right hand side is the same graph

with a clique fully connected to it.
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ONLY IF : Suppose G has a copy of Kj,j . Then, consider the union of this Kj,j and

the newly added clique C in H - call this set S. Note that any vertex in C is connected

to all vertices in S. Moreover, any vertex in the Kj,j subgraph is connected to itself, the

other side of the Kj,j and all of C, which is a total of 1 + j + (pj − 1) = (p+ 1)j vertices.

The size of S is (p+ 2)j − 1, so overall, every vertex in S is connected to at least a p+1
p+2

fraction of vertices in S.

IF : Now, suppose H contains an α-fractional cluster S of size k. We will prove that

|S ∩ A| and |S ∩ B| must both be at least j. Suppose for a contradiction that (without

loss of generality) |S∩A| < j. Then, any vertex in |S∩B| has at most j−1 neighbors in

|S∩A| and at most pj−1 neighbors in C. Moreover, it’s connected to itself, so in total it

has as most (p+ 1)j − 1 neighbors. The size of S is k = (p+ 2)j − 1, so it’s connected to

at most a (p+1)j−1
(p+2)j−1 fraction of S, which is strictly smaller that p+1

p+2 = α. Thus, S cannot

be an α-fractional cluster.

This proves that |S ∩A|, |S ∩B| ≥ j. Now, any vertex in u ∈ A is connected to at least

p+1
p+2 ·k = p+1

p+2 · [(p+2)j−1] = (p+1)j− p+1
p+2 neighbors in S. Since p+1

p+2 is always a fraction

smaller than 1, it must have at least (p+ 1)j neighbors in S. Of these, 1 is u itself, and
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at most pj− 1 neighbors can be in C. Thus, u must have at least j neighbors in B. This

argument shows that vertices in S∩A and S∩B must be fully connected to each other.

This shows that the balanced biclique problem Karp-reduces to α-fractional cluster-

ing, which shows that the latter is NP-hard.

4. FUTURE DIRECTIONS

Here are the some directions that we either pursued and couldn’t finish or that came

out of questions explored over the course of our research :

4.1. Improving the NP-hardness reduction

One immediate hope is to generalize the reduction so that it proves NP-hardness for

arbitrary values of α. Intuitively, there should be no reason why, say, 4
7 -fractional clus-

tering wouldn’t be NP-hard, but it is not obvious how our reduction could be gener-

alized to handle these fractions as well. An immediate next step might be to create a

reduction that handles all constant fractions uniformly.

4.2. Random sparsification

This is the direction that we originally started exploring, as noted in the ‘approcahes’

section. Balcan et al’s algorithm (when used on graphs instead of affinity systems)

requires clusters to be dense (i.e. the degrees are required to be proportional to clus-

ter the size). However, this is often not true in practice, because we might still be

interested in finding large clusters in social networks that are relatively sparse (i.e.

communities with low α-values). However, Balcan et al give a lower bound for this

case : there exist affinity systems with nΩ(1/α) many self-determined communities. On

the other hand, there construction for this lower bound is adversarial and unlikely to

arise in practice. Thus, one might explore the following question : if we assume that
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the edges in a sparse social network are (random) realizations of a denser underlying

graph, can we hope to recover sparser clusters too?

4.3. Hardness of approximation for min-degree density

We showed that the α-fractional clustering problem is NP-hard when α is a fraction

of a certain form. That natural question after this is whether we can efficiently find

approximate solutions to this problem (with respect to the cluster density). To put this

another way, we can consider the following gap-version of the α-fractional clustering

problem (this is a promise problem) :

Fix some constant α. We are given a graph G and a number k. We are promised that

one of the following is true :

(1) G contains an α-fractional cluster of size k

(2) Every set of vertices of size k in G has minimum degree at most (α− ε)k

Can we distinguish between these two cases? In other words, can we approximate the

optimal fractional min-degree of k-node subgraphs up to some constant error ε?

4.4. Relationship to the densest k-subgraph problem

The α-fractional clustering problem (as defined in 3.1) appears to be similar to the

densest k-subgraph problem [Feige et al. 2001]. The key difference in these two prob-

lems is that the densest k-subgraph problem asks for a graph of a specific size that

has high average degree, whereas α-fractional clustering asks for a graph of a certain

size that has high minimum degree. If one could find an explicit way to relate these

two notions (perhaps a good mapping reduction between these two problems), then one

could transfer algorithms and hardness results for densest k-subgraph to α-fractional

clustering.
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